
Abstract- Huge amount of data recorded during exercise
electrocardiography may be stored for further analysis or be
transferred to a remote physician through telephone lines. Due
to channel limitations, data must be compressed prior to the
transfer. In this study, an algorithm suitable for compression of
exercise electrocardiography data is proposed. 2-D Discrete
Cosine Transformation is applied in the algorithm to make use
of the pseudo periodic behavior of the data. To increase the
correlation, data is aligned from the R peaks. QRS detection is
performed using Fast Dyadic Wavelet Transform. The success
rate of the detection algorithm is found to be 99.78%. Uniform
scalar quantization is used with zonal coding method in the
coding of 2-D Discrete Cosine Transform coefficients. The
performance of the compression algorithm is evaluated in terms
of compression ratio, reconstruction error and by comparing the
reports of the ST segment depression test applied before the
compression and after the reconstruction to inspect whether
vital information is preserved.
Keywords - exercise electrocardiography, compression, discrete
cosine transform, dyadic wavelet transform

I. INTRODUCTION

Exercise electrocardiography (ECG) is one of the most
important and valuable non-invasive diagnostic test in the
clinical evaluation and management of patients with
suspected or known cardiovascular disease, particularly
coronary artery disease [1]. Exercise ECG can also provide
valuable information in evaluating the functional capacity of
patients and in evaluating the efficiency of surgical/medical
therapy.

Telemedicine is the use of telecommunications
technology to provide healthcare services to patients who are
geographically separated from a physician or other healthcare
providers. In a telemedicine system, some vital information
such as x-ray image, ECG signal, heart sound etc. is sent to
the remote physician to let him make a decision about the
patient’s health without seeing him physically. In many cases,
the datum that carries vital diagnostic information requires a
vast amount of space for storage and long transmission time
to reach the physician. For instance, a typical 12-lead exercise
ECG data that last 21 minutes with a sampling rate of 1000
samples/sec and a resolution of 16 bits/sample requires a
storage space of 28.8MB. Transmission of this raw data
through a channel of 33.6Kb/sec lasts 2 hours. Limitations on
storage space and transmission time require the compression
of the transmitted data.

In biomedical data compression, the clinical acceptability
of the reconstructed waveform is usually determined through
visually inspecting those critical points or areas that contain
more clinical information to the physicians. Here lie the weak

and strong points of lossy compression techniques. They can
compress more than lossless algorithms. However, some of
the vital information is lost.

Recent compression algorithms involve transform
coding. In these algorithms, data to be compressed are
transformed to another domain and compression is applied on
the transformed data set itself. Reconstruction is done by
decompressing the compressed data and backtransforming to
the original domain. An approach is the Karhunen-Loeve
Transform (KLT). In the KLT approach [2], eigenvectors of
the data autocovariance matrix are found and the ones that are
associated with the largest eigenvalues are retaind. Blanchett
reports a CR of 30:1. The major drawback of KLT is that, it is
data dependent and requires heavy computation. Some other
transforms used are Discrete Cosine Transform (DCT),
Fourier Transform [3], and Wavelet Transform (WT) [4]. In
these transforms, the energy is compacted to the coefficients
with high magnitude. Thus, by storing only the coefficients
that are greater than a threshold, compression is achieved.

The aim of this study is to present a compression
algorithm suitable for compressing exercise ECG data while
preserving the vital information.

II. METHODOLOGY

An ECG data set contains sample to sample correlation
as well as beat-to-beat correlation. Thus, a 2-D transform
coding scheme is used to handle the pseudo periodic behavior
of the exercise ECG. In this study, DCT is used as the 2-D
transform. The use of 2-D DCT requires the alignment of
adjacent heartbeats to increase the beat-to-beat correlation. To
align the adjacent heartbeats, the location of R peaks in the
ECG data should be determined. This is accomplished by
QRS detection. After R peaks are located, heartbeats are
aligned to each other and a 2-D array is formed. 2-D DCT is
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Fig. 1. Block diagram representation of the compression stage.
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applied to the raw data. Resulting transform coefficients are
quantized and encoded. Coefficients are further compressed
losslessly via Huffman coding and sent as compressed data.
Decompression is straightforward. Received data are decoded
via Huffman decoder and 2-D DCT coefficients are formed.
Inverse 2-D DCT transform is calculated and 2-D ECG data
array is reconstructed. As a final step, 1-D ECG data array is
recreated from the 2-D array. The procedure is summarized in
Fig. 1. Major concerns in evaluating the performance of the
algorithm are; the compression ratio and the retaining of the
vital information after compression-decompression of the
data. For this purpose, exercise ECG ST segment depression
test is applied to the reconstructed data and results are
compared with the test results applied to the original data.

A. QRS Detection

QRS detection is done by Dyadic Wavelet Transform
(DWT). The wavelet used in this study is a quadratic spline
wavelet with compact support and one vanishing moment. It
is the first derivative of a smoothing function [4]. In Mallat’s
work [4], quadratic spline wavelet is used for multiscale edge
detection. It is expected that the
edge detection wavelet should detect QRS region well since
this region contains the sharpest edges in the data. Scaling
function ( )xψ  and the associated wavelet function ( )xφ  are

given in Fourier domain as;
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A lowpass filter ( )ωH  associates the scaling function

and the dilated form of the scaling function as shown in (3).
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Wavelet functions are associated to the scaling functions
through a highpass filter ( )ωG  as in (4).
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Fast Dyadic Wavelet Transform (FDWT) of the 2-D
ECG data set is calculated using the “algorithme a trous”  as
explained in [4]. At each level, data set is passed through the
high pass filter to calculate FDWT coefficients and passed
through the low pass filter to calculate the input data set for
the next stage. At each level, filters are stretched as explained
in “algorithme a trous” . Fig. 3 shows the data in which the
QRS region is to be found, and 2 levels of FDWT, namely
data, d1, and d2. It is observed that at j th level, R peaks
correspond to the zero crossings of a minimum-maximum
pair in FDWT with a delay of 2j-2 points. That is, for level 1,
delay is 21-1=0 points. For level 4, delay is 24-2=14 points.

Fig. 2. ECG data set is aligned from R-peaks to form the 2-D array.
512 heartbeats are used in the creation process. Array is padded with
zero in order to make the length of all heartbeats equal.

Thus, R peaks can be exactly located from any level
transform, considering the delays.

B. Alignment and Discrete Cosine Transform

After the detection of R peaks, beats are aligned to each
other from the R peaks in a column order to create a 2-D
matrix as shown in Fig. 2. The reason for the creation of a 2-
D matrix is to use the pseudo periodic behavior of the
exercise ECG. The 2-D data in the matrix becomes more
correlated than the 1-D form since sample to sample and beat
to beat correlation can be inspected at the same time.

In the case of highly correlated data, Discrete Cosine
Transform (DCT) is the optimum transform in terms of both

Fig. 3. Top figure  shows 1-D ECG data. Middle and bottom figures
show two level Dyadic Wavelet Transform, respectively. At each
level, R peaks correspond to zerocrossings of a minima-maxima pair
in DWT with  a delay of  2j-2 points.
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Fig. 4. 2-D DCT coefficients of the 2-D ECG array. Low frequency
oefficients are greater than the higher frequency coefficients and
contribute more to the reconstruction process.

energy compaction and computational cost. Moreover, DCT
is data independent, i.e., basis functions are cosines at
different frequencies and since they are known at the decoder
side, they do not need to be transferred in a compression
system. Thus, 2-D DCT is used in the compression algorithm.

In this study, the number of beats used to create a 2-D
data matrix is chosen to be 128 after comparing the
compression performances. Since DC value of each beat is
different due to baseline change, DC values are subtracted
from the data before the matrix is formed. Due to the fact that
ECG is not strictly periodic in the mathematical sense, the
lengths of beats are different. In order not to introduce a
discontinuity, unfilled entries in each row are padded with
zero to make the length of all the rows same. Irregular beats
are not included in matrix generation and they are coded
losslessly via Huffman coding as described later. DC values,
starting and ending points of each beat are stored and coded
in the same way. Then, 128-point 2-D DCT is applied to the
2-D data. Transformed coefficients are as shown in Fig. 4.
Instead of applying to submatrices, 2-D DCT is applied to the
per 128 beat data matrix only to overcome the effect of block
size.

C. Bit Allocation and Quantization

After 2-D DCT is applied to the exercise ECG data, it is
observed that the transformed coefficients have real values,
and some coefficients are very high as compared to other
coefficients. Smaller coefficients do not need to be
represented with the precision that the higher coefficients are
represented.

The quantization method is determined to be uniform
scalar quantization in this work and is decided after the
statistical results of different ECG data sets are examined.
The examination of probability density function of DCT
coefficients of many patient files used in this study revealed
that, the DCT coefficients of a frame can be divided into 4
zones as shown in Fig. 5. A frame is defined to be every 128-
beat DCT coefficient matrix.

Fig. 5. Zones of a 128xM frame. DCT coefficient values decrease
from Zone I to Zone IV. 

The quantization in each zone is performed
independently from the other zones. Since the distribution of
coefficients in each zone changes from frame to frame, a
uniform quantization table is used. As a result, uniform scalar
quantization with zonal coding is preferred. A closely related
problem is the bit allocation to the zones, which in fact
determines the quantization step and the reconstruction error.
In this study, the quantization step, ∆ , is calculated for each
zone in each frame to consider the rapidly changing
characteristics of the exercise ECG data and is sent to the
decoder for every zone and frame. Since Zone I contains the
most important coefficients, they are sent near losslessly (i.e.,
∆  =1). Zone IV is not sent to the decoder side since the
coefficients in that region do not contribute to the
reconstruction much. Table I denote different compression
types that correspond to different bit allocations to the zones
mentioned.

TABLE I

ZONES IN A FRAME AND THE CORRESPONDING

ALLOCATED BITS

Type
Zone

I
Zone

II
Zone
III

Bit I
(bps)

Bit II
(bps)

Bit III
(bps)

1 2 x 150 126 x 30 126 x 70 16 6 1

2 2 x 150 126 x 30 126 x 70 16 6 2

3 2 x 150 126 x 30 126 x 70 16 6 3

4 2 x 150 126 x 30 126 x 70 16 7 2

D. Huffman Coding

After DCT coefficients are quantized, these coefficients
are further compressed losslessly via Huffman coding. The
basic idea under the Huffman algorithm is that, the more
frequent messages can be represented with shorter codes (less
amount of bits) and less frequent messages can be represented
with longer codewords. At the end of assigning bits to the
messages, a look up table is created. The look up table is sent
to the decoder and a decoding tree is generated at the decoder
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Fig. 6. Block diagram of the reconstruction steps.

side. Encoded data set is decoded instantly by constructing a
binary tree as the datum comes. This lossless algorithm is
applied to the quantized DCT coefficients and the irregular
beats excluded in the analysis as well as to the DC values,
starting and ending locations of every beat mentioned before.

E. Reconstruction

Reconstruction step is straightforward. Lossless encoded
coefficients, irregular beats excluded in the transform, DC
values of beats, starting and ending points of beats are
decoded via Huffman decoder. 2-D coefficient matrix is
formed. Inverse 2-D DCT is applied to calculate the 2-D data
matrix. Considering the irregular beats excluded in the
transform, DC values of beats, starting and ending locations
of beats, 2-D data matrix is returned back to the original 1-D
ECG data. This process is shown in Fig. 6.

III. RESULTS

Performance of the wavelet based QRS detection
algorithm is evaluated in terms of the number of the
heartbeats in an ECG data set and the number of the
heartbeats found by the detector using  (5).






=

RB

FRB-RB
*100 % RateSuccess (5)

where   RB: Regular beats present in the data

FRB: Regular beats found by the algorithm

The QRS detector rejected all the irregular beats in all of the
15 patient files successfully. Average Success Rate of the
algorithm is found to be %99.78.

Compression results are evaluated with the criteria of
compression ratio (CR) as in (6), percent root mean square
difference (PRMS), and with ST Segment Depression Test.

(6)

The ST60 Trend Graphic produced by the test shows
every 10-second average of the ST region amplitude found in
the ECG data. The data to be used are evaluated with this test
before the compression and after the decompression.
Performance is evaluated by comparing the test graphics. Fig.
7 shows the ST60 Trend Graphic of a patient before the
compression. Files that are compressed at types 1 and 2 did
not produce the same ST60 graphics before the compression
and after the decompression. Type-3 compression generally

produced the same graphics with minor differences, whereas
type-4 compressed files always give out the same graphics
after the decompression. CR value for type-1 and type-3 is
found to range from 10:1 to 12:1. Type-4 CR value ranges
between 7.86:1 and 9.64:1.

IV. CONCLUSION

In this study, an algorithm suitable for the compression
of exercise ECG is proposed. The study involved the
detection of QRS region. A different detection algorithm
based on Dyadic Wavelet Transform is used. This detection
algorithm is found to be superior to classical techniques since
it is immune to baseline change and can be implemented
using fast filterbank algorithms.

Proposed method’s results are evaluated using
compression ratio (CR), reconstruction error, and ST
depression test. In the study, four different compression levels
are used. Zones that are mentioned previously are coded with
6-1, 6-2, 7-2, and 6-3 bit pairs. Test results reveal that the
compression type-4 compresses the data such that, when
reconstructed, the clinically important information is still kept
intact. The compression success is judged by the similarity of
the graphics produced by the test program. Types 1 and 2
generally failed the test. Type 3 mostly produced the similar
graphics with some minor changes. Type 4 is the only
compression type that produced the same graphics.

It is also concluded that, ECG leads I, aVF, and V2 are
more susceptible to loss of information during compression.
The safe assumed type 4 compression yields results that range
from 7.86:1 to 9.64:1 in the data set used. The term safe is
judged via the graphics comparison results such that the vital
information is preserved.
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